
Hadoop Overview

Lavanya Ramakrishnan
Iwona Sakrejda
Shane Canon

Lawrence Berkeley National Lab

July 2011

Overview

•  Concepts & Background
– MapReduce and Hadoop

•  Hadoop Ecosystem
– Tools on top of Hadoop

•  Hadoop for Science
– Examples, Challenges

•  Programming in Hadoop
– Building blocks, Streaming, C-HDFS API

2

Processing Big Data

•  Internet scale generates BigData
– Terabytes of data/day
–  just reading 100 TB can be overwhelming

•  using clusters of standard commodity
computers for linear scalability

•  Timeline
– Nutch open source search project

(2002-2004)
– MapReduce & DFS implementation and

Hadoop splits out of Nutch (2004-2006)

3

MapReduce

•  Computation performed on large
volumes of data in parallel
– divide workload across large number of

machines
– need a good data management scheme to

handle scalability and consistency
•  Functional programming concepts

– map
– reduce

4
OSDI 2004

Mapping

•  Map input to an output using some
function

•  Example
– string manipulation

5

Reduces

•  Aggregate values together to provide
summary data

•  Example
– addition of the list of numbers

6

Google File System

•  Distributed File System
– accounts for component failure
– multi-GB files and billions of objects

•  Design
– single master with multiple chunkservers

per master
–  file represented as fixed-sized chunks
– 3-way mirrored across chunkservers

7

Hadoop

•  Open source reliable, scalable distributed
computing platform
–  implementation of MapReduce
–  Hadoop Distributed File System (HDFS)
–  runs on commodity hardware

•  Fault Tolerance
–  restarting tasks
–  data replication

•  Speculative execution
–  handles stragglers

8

HDFS Architecture

9

HDFS and other Parallel
Filesystems

HDFS GPFS and Lustre
Typical Replication 3 1
Storage Location Compute Node Servers
Access Model Custom (except with

Fuse)
POSIX

Stripe Size 64 MB 1 MB
Concurrent Writes No Yes
Scales with # of Compute Nodes # of Servers
Scale of Largest
Systems

O(10k) Nodes O(100) Servers

User/Kernel Space User Kernel

Who is using Hadoop?

•  A9.com
•  Amazon
•  Adobe
•  AOL
•  Baidu
•  Cooliris
•  Facebook
•  NSF-Google

university initiative

•  IBM
•  LinkedIn
•  Ning
•  PARC
•  Rackspace
•  StumbleUpon
•  Twitter
•  Yahoo!

11

Hadoop Stack

Core Avro

MapReduce HDFS

Pig Chukwa Hive HBase

Source: Hadoop: The Definitive Guide

Zoo
Keeper

12

Constantly evolving!

Google Vs Hadoop

Google Hadoop
MapReduce Hadoop MapReduce
GFS HDFS
Sawzall Pig, Hive
BigTable Hbase
Chubby Zookeeper
Pregel Hama, Giraph

13

Pig

•  Platform for analyzing large data sets
•  Data-flow oriented language “Pig Latin”

– data transformation functions
– datatypes include sets, associative arrays,

tuples
– high-level language for marshalling data

•  Developed at Yahoo!

14

Hive

•  SQL-based data warehousing
application
–  features similar to Pig
– more strictly SQL-type

•  Supports SELECT, JOIN, GROUP BY,
etc

•  Analyzing very large data sets
–  log processing, text mining, document

indexing
•  Developed at Facebook

15

HBase

•  Persistent, distributed, sorted,
multidimensional, sparse map
– based on Google BigTable
– provides interactive access to information

•  Holds extremely large datasets (multi-
TB)

•  High-speed lookup of individual (row,
column)

16

ZooKeeper

•  Distributed consensus engine
– runs on a set of servers and maintains

state consistency
•  Concurrent access semantics

–  leader election
– service discovery
– distributed locking/mutual exclusion
– message board/mailboxes
– producer/consumer queues, priority

queues and multi-phase commit
operations

17

Other Related Projects [1/2]

•  Chukwa – Hadoop log aggregation
•  Scribe – more general log aggregation
•  Mahout – machine learning library
•  Cassandra – column store database on a P2P

backend
•  Dumbo – Python library for streaming
•  Spark – in memory cluster for interactive and

iterative
•  Hadoop on Amazon – Elastic MapReduce

18

Other Related Projects [2/2]

•  Sqoop – import SQL-based data to Hadoop
•  Jaql – JSON (JavaScript Object Notation)

based semi-structured query processing
•  Oozie – Hadoop workflows
•  Giraph – Large scale graph processing on

Hadoop
•  Hcatlog – relational view of HDFS
•  Fuse-DS – POSIX interface to HDFS

19

Hadoop for Science

20

Magellan and Hadoop

•  DOE funded project to determine
appropriate role of cloud computing for
DOE/SC midrange workloads

•  Co-located at Argonne Leadership
Computing Facility (ALCF) and National
Energy Research Scientific Center
(NERSC)

•  Hadoop/Magellan research questions
– Are the new cloud programming models

useful for scientific computing?

– 
21

Data Intensive Science

•  Evaluating hardware and software
choices for supporting next generation
data problems

•  Evaluation of Hadoop
– using mix of synthetic benchmarks and

scientific applications
– understanding application characteristics

that can leverage the model
•  data operations: filter, merge, reorganization
•  compute-data ratio

22

(collaboration w/ Shane Canon, Nick Wright, Zacharia Fadika)

MapReduce and HPC

•  Applications that can benefit from
MapReduce/Hadoop
– Large amounts of data processing
– Science that is scaling up from the

desktop
– Query-type workloads

•  Data from Exascale needs new
technologies
– Hadoop On Demand lets one run Hadoop

through a batch queue
23

Hadoop for Science

•  Advantages of Hadoop
–  transparent data replication, data locality

aware scheduling
–  fault tolerance capabilities

•  Hadoop Streaming
– allows users to plug any binary as maps

and reduces
–  input comes on standard input

24

BioPig

•  Analytics toolkit for Next-Generation
Sequence Data

•  User defined functions (UDF) for
common bioinformatics programs
– BLAST, Velvet
– readers and writers for FASTA and FASTQ
– pack/unpack for space conservation with

DNA sequenceså

25

Application Examples

•  Bioinformatics applications (BLAST)
– parallel search of input sequences
– Managing input data format

•  Tropical storm detection
– binary file formats can’t be handled in

streaming
•  Atmospheric River Detection

– maps are differentiated on file and
parameter

26

HDFS vs GPFS (Time)

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000

Ti
m

e
(m

in
ut

es
)

Number of maps

Teragen (1TB)
HDFS

GPFS

Linear
(HDFS)
Expon.
(HDFS)
Linear
(GPFS)
Expon.
(GPFS)

27

•  Wikipedia data set
•  On ~ 75 nodes,

GPFS performs
better with large
nodes

Application Characteristic Affect
Choices

!  !"#$%&'()"'*')(+'",)
'$")-.+&#,,/$0)(+'")

!  12+3$*)+4)5./%$0)/$)
'--(/&'%+$)'6#&*,)
-#.4+.2'$&#)

•  Deployment
–  all jobs run as user “hadoop” affecting file
permissions
–  less control on how many nodes are used -
affects allocation policies

•  Programming: No turn-key solution
–  using existing code bases, managing input
formats and data

•  Additional benchmarking, tuning
needed, Plug-ins for Science

Hadoop: Challenges

29

Comparison of MapReduce
Implementations

30

40 50 60 70 80 90

0
50

10
0

15
0

Output data size (MB)

Pr
oc

es
sin

g
tim

e
(s

)

64 core Twister Cluster
64 core Hadoop Cluster
64 core LEMO−MR Cluster

Collaboration w/ Zacharia Fadika, Elif Dede, Madhusudhan
Govindaraju, SUNY Binghamton

0 10 20 30 40 50 60

0
10

20
30

40
50

Cluster size (cores)

Sp
ee

du
p

!

!

!

!

!

!! 64 core Twister Cluster
64 core LEMO−MR Cluster
64 core Hadoop Cluster

Hadoop Twister LEMO−MR

0
10

20 node1
node2
node3

Hadoop Twister LEMO−MR

Nu
m

be
r o

f w
or

ds
 p

ro
ce

ss
ed

 (B
illi

on
)

0
10

20

node1: (Under stress)
node2
node3

Producing random floating point numbers

Load balancing

Processing 5 million 33 x 33 matrices

Programming Hadoop

31

•  Maps and reduces handle key value
pairs
•  Write Map and reduce as Java
programs using Hadoop API
•  Pipes and Streaming can help with
existing applications in other
languages
•  Higher-level languages such as Pig
might help with some applications
•  C- HDFS API

Programming with Hadoop

32

Keys and Values

•  Maps and reduces produce key-value
pairs
– arbitrary number of values can be output
– may map one input to 0,1, ….100 outputs
– reducer may emit one or more outputs

•  Example: Temperature recordings
– 94089 8:00 am, 59
– 27704 6:30 am, 70
– 94089 12:45 pm, 80
– 47401 1 pm, 90

33

Keys divide the reduce space

34

Data Flow

35

Mechanics[1/2]

•  Input files
–  large 10s of GB or more, typically in HDFS
–  line-based, binary, multi-line, etc.

•  InputFormat
–  function defines how input files are split up and

read
–  TextInputFormat (default), KeyValueInputFormat,

SequenceFileInputFormat
•  InputSplits

–  unit of work that comprises a single map task
–  FileInputFormat divides it into 64MB chunks

36

Mechanics [2/2]

•  RecordReader
–  loads data and converts to key value pair

•  Sort & Partiton & Shuffle
–  intermediate data from map to reducer

•  Combiner
– reduce data on a single machine

•  Mapper & Reducer
•  OutputFormat, RecordWriter

37

 public static class TokenizerMapper
 extends Mapper<Object, Text, Text, IntWritable>{
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
 StringTokenizer itr = new StringTokenizer(value.toString());
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);
 }
 }
 }

Word Count Mapper

38

 public static class IntSumReducer
 extends Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 result.set(sum);
 context.write(key, result);
 }
 }

Word Count Reducer

39

public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
 ….
 Job job = new Job(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);

}

Word Count Example

40

•  Allows C++ code to be used for
Mapper and Reducer
•  Both key and value inputs to pipes
programs are provided as std::string
•  $ hadoop pipes

Pipes

41

•  Limited C API to read and write from HDFS
#include "hdfs.h"
int main(int argc, char **argv)
{
 hdfsFS fs = hdfsConnect("default", 0);
 hdfsFile writeFile = hdfsOpenFile(fs, writePath,

O_WRONLY|O_CREAT, 0, 0, 0);
 tSize num_written_bytes = hdfsWrite(fs, writeFile,

(void*)buffer, strlen(buffer)+1);
 hdfsCloseFile(fs, writeFile);
 }

C-HDFS API

42

•  Generic API that allows programs in
any language to be used as Hadoop
Mapper and Reducer implementations
•  Inputs written to stdin as strings with
tab character separating
•  Output to stdout as key \t value \n
•  $ hadoop jar contrib/streaming/
hadoop-[version]-streaming.jar

Hadoop Streaming

43

•  Test core functionality separate
•  Use Job Tracker
•  Run “local” in Hadoop
•  Run job on a small data set on a
single node
•  Hadoop can save files from failed
tasks

Debugging

44

Acknowledgements

•  US Department of Energy DE-AC02-05CH11232
•  Elif Dede
•  Zacharia Fadika
•  Devarshi Ghoshal
•  Tina Declerck

45

Questions?

Magellan Website:
http://magellan.nersc.gov

Lavanya Ramakrishnan
LRamakrishnan@lbl.gov

46

